Python 3 & N 4% 32

- Xlaorui.cc

http://xiaorui.cc

Object-specific allocators

[int] [dict][list] ... [string] Python core |
13)¢ Object-specific memory ——-—- > | <-- Non-object memory --> |

[Python's object allocator] | |

+2 | ###HH#H#HH#HH Object memory #H#HHEHHEH | <————-- Internal buffers ---—--- > |
[Python's raw memory allocator (PyMem_ API)]
+1 |t Python memory (under PyMem manager's control) --———- > |

[Underlying general-purpose allocator (ex: C library malloc)]
0| <-——--- Virtual memory allocated for the python process ------- > |

| OS-specific Virtual Memory Manager (VMM)]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |

| 1]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

* Request in bytes Size of allocated block Size class idx
%

> 1-8 3 0,
- 9-16 16 1

2 17-24 24 2
5 25-32 32 3
P 33-40 40 A
3 41-48 48 5
5 49-56 56 6
5 57-64 64 V4
x coo coe coo

o 497-504 504 62
o 505-512 512 63
%

%

N FSMALL REQUEST THRESHOLD £APyObject Malloc, KT :BftZ|malloctT7

p
i

@ process heap
@ Arenas
@ Pool

@ UsedPools

@ FreePools

A

)

1] A

#

method

@ posix malloc
@ python memory pool

@ object buffer pool

Process

stack

heap

bss

init data

text

Arena

malloc heap &
pool

Arena

UserPool

1-8

249 - 256

FeeePool

Pool

Pool

Pool

Pool

Free Block

Free Block

Use Block

|

Pool

Headers

No BlLock

UserdPools

1-8

9-16

17-24

249-256

userdpool design

Pool

Header

/-> Header
Zi

Free Block

=)

Free Block

Pool

@ 5] —/MPool TBlock—#% %k

Free Block

@ - Pool 4 4kb

Free Block

Use Block

@ Block % Pool#; A 4% %

FeeePool

Pool

Pool

Pool

free pool desgin

E ey

Pool

Headers

No BlLock

S

Pool

Headers

No BlLock

@ Pool 71 4kb X /]

@ Pool /7 ##Headers

where store variable ?

run-time Stack

list

dict

int

why ?

In [1]): a = 123 In[7): a="n’

In [2]: b = 123 In [8]: b ="n

In[3]:ais b In[9): ais b

Out[3]: True Out[9]: True
In [4]: a = 1000 011G o = "python”
In [5]: b = 1000 In [11]: b = "python"
In[6]: ais b In[12): ais b

Out|[6]: False Out[12]: True

In [10]: a = b = 'nima’

In[11l): b=a

In[12]: ais b
Out[12]: True

In [13]: b = 'hehe’

In[14): ais b
Out[14]: False

| 4
A2\

why ?

ZRADii

In [1]: def go(var):
print id(var)

In [2]: id(a)
Out[2]: 4401335072

In [3]: go(a)
4401335072

python objects stored in memory?

Python Has Names, Not Variables ! ! !

N EEZ s
25 T G 0 .. | 256 | 257 4 sl i ey
Wi A8 ik DB
var__1 var_2
= = @ 28 bytes
4 var__3 var_4 not the same addr

@ MR B w451
the same addr !

Block List

Free List

PyIntBlock

PyIntBlock

var_ 1

the same addr !

var_2

\

)

B AF F

cao

oh

woyao

buyao

Kuai

feile

@ hash G54t L=

@ X

JF] 3, 3k

@ T3k 5| T3

PyObject_GC_TRACK

func: PyList_New o[UNERTR 5% for container !

Node —— e —

ref: https://svn.python.org/projects/python/trunk/Objects/listobject.c

https://svn.python.org/projects/python/trunk/Objects/listobject.c

ref count

X = 300
y = X ref += 1 -~ ref +=1
z =[x, Y]

S

References -> 4 !

What does del do?

X = 300
Y= A
del X ref -=1

The del statement doesnt delete objects. References -> 1!

e removes that name as a reference to that object
e reduces the ref count by 1

ref count case

def go():
w = 300

go() b wis out of scope; ref count -1

[

a = "fuc .

del a - _——» del a; ref count -1

b = \\en' all

\n’.\‘J

> 7 1818 ; ref count -1
b = None

class Node:

def __init__(self, va):

selfva = va
def next(self, next):
self.next = next

mid = Node('root’)
left = Node('left’)
right = Node('right’)

mid(left)
left.next(right)
right.next(left)

cyclical ref

" if del mid node:

how ?

mark & sweep

24K L

PyGC_Head T o e

Young

Old

Permanent

v
node node node | node node @ node | node
node node @ node node node @ node
node | node i node ? ; node ' node ; node

Q ©Q Q Q

when gc

import gc
(700, 10, 5)

PyMemApi
o BT 4K 35

summery

o BL A A+

-> ZIPAR LA T

-> Ak 2 B IR EK

=> KPR TR AT Rk R AR B — AL

-> ¥ J1, VAR G| R

=> R ARG AT E=0 o AR AHE >0 AALES
-> XTFO0&, N3 F%—14K

-> =047, HATEDIK

-> B P 5B N 8 2T E, BRI M UE 5| R T 2 (B AR AA 2R 5 R)
-> PAT-1093F 5, 5 R I Z 5] A+ 2=0, k2 N 7 = I
-> pythonJx = N 74 & B AUH B A 75

e)

weakref 33 7| JH

class Expensive(object):
def __del__ (self): o FALZ At
print '(Deleting %s)' % self
@ RFEVEIRT] A

obj = Expensive()
r = weakrefref(obj) class Parent(object):
del obi def __init__(self):
orint P, () self.children = [Child(self)]
class Child(object):
def __init___(self, parent):
self.parent = weakref.proxy(parent)

T vs 1~ % (obj)

@ string
@ list

@ Int
@ dict

@ tuple

[10, 10, 11]

a

container objects

n

4

PyListObject
Type list
rc 1
items
Size

PyObject

Type |integer

10

10

11

rc 2
value 10
PyObject

Type |integer

rc |

value 11

[10, 10, [10, 11]]
copy.copy(a)

PyListObject
Type list
rc 1
itfems
Size
PyListObject
Type list

rc

1

items

sSize

copy.copy

10

/ 10

ref

PyObject
Type |integer
rc 2
value 10

PyListObject

— | 10

10

10

ref

11

PyObject

o

Type | integer
rc 1
value 11

copy.deepcopy

o
I

o
I

’ [’] \
COPY.deeP(a) v ‘/_\ PyObject
PyListObject _

. Type |integer
b1 ok 1§0) PyListObject
rc | kel " / rc 2
: 11 value 10
SlZze

PyListObject PyListObject
Type list |

i Y Type | integer
items 11 bt g rc 1

R i '_/ value 11

diy gc

import gc

import sys
gc.set_debug(gc.DEBUG_STATS|gc.DEBUG_LEAK)
a=(]

b=(]

a.append(b)

print 'a refcount:',sys.getrefcount(a) # 2

print 'b refcount:',sys.getrefcount(b) # 3

del a
del b
print gc.collect() # O

Garbage Collector Optimize

@ memory bound
@ T YAF&fik threshold sk B] 3% 7 I

@ cpu bound
@ 3% 5 threshold >k == 8] 3 B [9]
@ #71%gc, 5] Amaster workeri% it

Q& A

@ 7| A2 3k gil AR ?
dgc EERRT ?

@ gcy stop the worldIlL % 2
s

A , S
Yo . t
“
e .
f
2
+ .
0 7 -
)
:
')
s g
[} 4 -
V%
*) p %
A%
'
\ X o

i
e

ol T
o

TILeA syl
-
¥

__'\s

http://xiaorui.cc

