
Python⾼级内存管理

- xiaorui.cc

http://xiaorui.cc

 Object-specific allocators
 _____ ______ ______ ________
 [int] [dict] [list] ... [string] Python core |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
 _______________________________ | |
 [Python's object allocator] | |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
 __ |
 [Python's raw memory allocator (PyMem_ API)] |
+1 | <----- Python memory (under PyMem manager's control) ------> | |
 __
 [Underlying general-purpose allocator (ex: C library malloc)]
 0 | <------ Virtual memory allocated for the python process -------> |
 ===

 [OS-specific Virtual Memory Manager (VMM)]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
 __________________________________ __________________________________
 [] []
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

 * Request in bytes Size of allocated block Size class idx
 * --
 * 1-8 8 0
 * 9-16 16 1
 * 17-24 24 2
 * 25-32 32 3
 * 33-40 40 4
 * 41-48 48 5
 * 49-56 56 6
 * 57-64 64 7
 *
 * 497-504 504 62
 * 505-512 512 63
 *
 *
 */

名词解释

process heap

Arenas

Pool

UsedPools

FreePools

method

posix malloc

python memory pool

object buffer pool

Arena

FeeePool

Pool

Pool

Pool

Pool

Headers

No BLock

Arena

malloc heap &
pool

Process

stack

heap

bss

init data

text

UserPool

1-8

… …

249 - 256

Pool

Free Block

Free Block

Use Block

userdpool design

UserdPools
1-8
9-16
17-24

…
…

249-256

Pool

Header

Free Block

Free Block

Header

分配

回收

…

Pool

Free Block

Free Block

Use Block

同⼀个Pool下Block⼀样长

单Pool为4kb

Block及Pool都为单链表

free pool desgin
FeeePool

Pool

Pool

Pool

…

Pool

Headers

No BLock

Pool

Headers

No BLock

Pool为4kb⼤小

Pool清理Headers

where store variable ?

run-time Stack

list

dict

int

heap

[1 ,2, 3]

{“n”: “1”}

1

why ?
In [1]: a = 123

In [2]: b = 123

In [3]: a is b
Out[3]: True

In [4]: a = 1000

In [5]: b = 1000

In [6]: a is b
Out[6]: False

In [7]: a = 'n'

In [8]: b = 'n'

In [9]: a is b
Out[9]: True

In [10]: a = "python"

In [11]: b = "python"

In [12]: a is b
Out[12]: True

why ?

In [1]: def go(var):
 ...: print id(var)
 …:

In [2]: id(a)
Out[2]: 4401335072

In [3]: go(a)
4401335072

In [10]: a = b = 'nima'

In [11]: b = a

In [12]: a is b
Out[12]: True

In [13]: b = 'hehe'

In [14]: a is b
Out[14]: False

只有引用 ?

python objects stored in memory?

names

names

object

Python Has Names, Not Variables ! ! !

整数对象池

-5 -4 … 0 … 256 257

小整数 ⼤整数

… … -5 -4 … … 257 … …

var_1 var_2

… … -5 -4 … … 257 … …

var_3 var_4

the same addr !

not the same addr !
28 bytes
解释器初始化

整数对象池

Block List

Free List

PyIntBlock PyIntBlock

PyIntBlock PyIntBlock

不会归还给 Arena和os ! ! !

字符对象池

a b c d … … …

var_1 var_2

the same addr !

单个字符38 bytes
由解释器初始化

字符串对象池

aa en cao oh woyao buyao kuai feile

var_1

0 1 2 3 …

var_2

hash存储变量
共用地址
记录引用计数

ref

PyObject_GC_TRACK

func: PyList_New

func: list_dealloc

Node NodePyGC_Head

ref: https://svn.python.org/projects/python/trunk/Objects/listobject.c

https://svn.python.org/projects/python/trunk/Objects/listobject.c

ref count

x = 300
y = x
z = [x, y] X

ref += 1

300

y

Z

ref += 1

ref += 2

References -> 4 ！

What does del do?

x = 300
y = x
del x

X

ref -= 1

300

y

References -> 1！The del statement doesn’t delete objects.
• removes that name as a reference to that object
• reduces the ref count by 1

ref count case
def go():
 w = 300

go()

a = “fuc . ”
del a

b = “en, a”
b = None

ref count +1

w is out of scope; ref count -1

del a; ref count -1

重新赋值; ref count -1

cyclical refclass Node:
 def __init__(self, va):
 self.va = va
 def next(self, next):
 self.next = next

mid = Node(‘root’)
left = Node(‘left’)
right = Node(‘right’)

mid(left)
left.next(right)
right.next(left)

Mid

rightleft

if del mid node:
 how ?

mark & sweep

gc root
b

a

w

c

K G

R

分代回收

node node node node node node node

node node node node node node

node node node node node node

分⽽治之
提⾼效率
⽣命周期
空间换时间

Young

Old

Permanent

PyGC_Head

when gc
import gc
gc.set_threshold(700, 10, 5)

计数器 ?
700 ?
10 ?
5 ?

PyMemApi
分配计数器

1代回收
N % 10

2代回收
N % 5

0代回收
> 700

summery
分配内存

-> 发现超过阈值了
-> 触发垃圾回收
-> 将所有可收集对象链表放到⼀起
-> 遍历, 计算有效引用计数
-> 分成 有效引用计数=0 和 有效引用计数 > 0 两个集合
-> ⼤于0的, 放⼊到更老⼀代
-> =0的, 执⾏回收
-> 回收遍历容器内的各个元素, 减掉对应元素引用计数(破掉循环引用)
-> 执⾏-1的逻辑, 若发现对象引用计数=0, 触发内存回收
-> python底层内存管理机制回收内存

weakref 弱引用

不参与引用计数

解决循环引用

class Expensive(object):
 def __del__(self):
 print '(Deleting %s)' % self

obj = Expensive()
r = weakref.ref(obj)
del obj
print 'r():', r()

class Parent(object):
 def __init__(self):
 self.children = [Child(self)]

class Child(object):
 def __init__(self, parent):
 self.parent = weakref.proxy(parent)

可变 vs 不可变 (obj)

string

int

tuple

list

dict

container objects
a = [10, 10, 11]
b = a

PyListObject

Type list

rc 1

items

size

… …

PyObject

Type integer

rc 2

value 10

PyObject

Type integer

rc 1

value 11

10

10

11

copy.copy
a = [10, 10, [10, 11]]
b = copy.copy(a)

PyListObject
Type list
rc 1

items
size
… …

PyObject

Type integer

rc 2

value 10

PyObject

Type integer

rc 1

value 11

10

10

ref

PyListObject
Type list
rc 1

items
size
… …

10

10

ref

PyListObject

10

11

copy.deepcopy
a = [10, [10, 11]]
b = copy.deep(a)

PyListObject
Type list
rc 1

items
size
… …

PyObject

Type integer

rc 2

value 10

PyObject

Type integer

rc 1

value 11

10

ref

PyListObject
Type list
rc 1

items
size
… …

10

ref

PyListObject

10

11

PyListObject

10

11

diy gc

import gc
import sys
gc.set_debug(gc.DEBUG_STATS|gc.DEBUG_LEAK)
a=[]
b=[]
a.append(b)
print 'a refcount:',sys.getrefcount(a) # 2
print 'b refcount:',sys.getrefcount(b) # 3

del a
del b
print gc.collect() # 0

Garbage Collector Optimize

 memory bound
 可以降低threshold来时间换空间

 cpu bound
 提⾼threshold来空间换时间
 暂停gc, 引⼊master worker设计

引用计数 跟 gil 的影响 ?

gc 是否是原⼦ ?

gc的 stop the world现象 ?

…

Q & A

“ END ”

– xiaorui.cc

http://xiaorui.cc

