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Object-specific allocators

[ int ] [ dict ][ list ] ... [ string ] Python core |
13 )¢ Object-specific memory ——-—- > | <-- Non-object memory --> |

[ Python's object allocator ] | |

+2 | ###HH#H#HH#HH Object memory #H#HHEHHEH | <————-- Internal buffers ---—--- > |
[ Python's raw memory allocator (PyMem_ API) ]
+1 |t Python memory (under PyMem manager's control) --———- > |

[ Underlying general-purpose allocator (ex: C library malloc) ]
0| <-——--- Virtual memory allocated for the python process ------- > |

| OS-specific Virtual Memory Manager (VMM) ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |

| 1 ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
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@ process heap
@ Arenas
@ Pool
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method

@ posix malloc
@ python memory pool

@ object buffer pool
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where store variable ?

run-time Stack

list

dict

int




why ?

In [1]): a = 123 In[7): a="n’

In [2]: b = 123 In [8]: b ="n

In[3]:ais b In[9): ais b

Out[3]: True Out[9]: True
In [4]: a = 1000 011G o = "python”
In [5]: b = 1000 In [11]: b = "python"
In[6]: ais b In[12): ais b

Out|[6]: False Out[12]: True



In [10]: a = b = 'nima’

In[11l): b=a

In[12]: ais b
Out[12]: True

In [13]: b = 'hehe’

In[14): ais b
Out[14]: False
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In [1]: def go(var):
print id(var)

In [2]: id(a)
Out[2]: 4401335072

In [3]: go(a)
4401335072



python objects stored in memory?

Python Has Names, Not Variables ! ! !
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Block List

Free List

PyIntBlock
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var_ 1

the same addr !

var_2
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PyObject_GC_TRACK

func: PyList_New o[UNERTR 5% for container !

Node —— e —

ref: https://svn.python.org/projects/python/trunk/Objects/listobject.c



https://svn.python.org/projects/python/trunk/Objects/listobject.c

ref count

X = 300
y = X ref += 1 -~ ref +=1
z =[x, Y]

S

References -> 4 !



What does del do?

X = 300
Y= A
del X ref -=1

The del statement doesnt delete objects. References -> 1!

e removes that name as a reference to that object
e reduces the ref count by 1



ref count case

def go():
w = 300

go() b wis out of scope; ref count -1

[

a = "fuc .

del a - _——» del a; ref count -1

b = \\en' all

\n’.\‘J

> 7 1818 ; ref count -1
b = None



class Node:

def __init__(self, va):

selfva = va
def next(self, next):
self.next = next

mid = Node('root’)
left = Node('left’)
right = Node('right’)

mid(left)
left.next(right)
right.next(left)

cyclical ref

" if del mid node:

how ?




mark & sweep
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when gc

import gc
(700, 10, 5)

PyMemApi
o BT 4K 35
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weakref 33 7| JH

class Expensive(object):
def __del__ (self): o FALZ At
print '(Deleting %s)' % self
@ RFEVEIRT] A

obj = Expensive()
r = weakrefref(obj) class Parent(object):
del obi def __init__(self):
orint P, () self.children = [ Child(self) ]
class Child(object):
def __init___(self, parent):
self.parent = weakref.proxy(parent)



T vs 1~ % (obj)

@ string
@ list

@ Int
@ dict

@ tuple
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[10, 10, [10, 11]]
copy.copy(a)
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copy.deepcopy
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diy gc

import gc

import sys
gc.set_debug(gc.DEBUG_STATS|gc.DEBUG_LEAK)
a=(]

b=(]

a.append(b)

print 'a refcount:',sys.getrefcount(a) # 2

print 'b refcount:',sys.getrefcount(b) # 3

del a
del b
print gc.collect() # O



Garbage Collector Optimize

@ memory bound
@ T YAF&fik threshold sk B ] 3% 7 I

@ cpu bound
@ 3% 5 threshold >k == 8] 3 B [9]
@ #71%gc, 5] Amaster workeri% it
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