
gil那些事⼉
峰云就她了

http://xiaorui.cc

http://xiaorui.cc

相关

什么是python解释器

CPython vs pypy vs Jython

gil

什么是 Global Interpreter Lock

Python为什么会有gil

gil的优缺点

关于gil的历史

Thread A Thread B

O| | | | | | |-1

1. get the current length
2. check if there’s room for more
3. Append element
4. Incrment the length by 1

Python’ s 线程

python线程是系统线程的.

POSIX threads (pthreads)

Windows threads

受内核来调度并切换上下⽂

性能对比

def go_count(n):
 while n > 0:

 n -= 1
COUNT = 100000000 # 100 million
go_count(COUNT)

t1 = Thread(target=go_count,args=(COUNT//2,))
t2 = Thread(target=go_count,args=(COUNT//2,))
t1.start(); t2.start()
t1.join(); t2.join()

thread only

thread two

cost 10s

cost 21s

那么问题来了

多线程为什么比单线程还慢 ?

python解释器运⾏原理

只有⼀个线程在running

多线程acquire lock的消耗成本

gil

简单描述:

拿到gil锁，谁就可以running , 当释放gil, send signal

没拿到gil锁, 休眠. 内核调度到你, 你如果没锁, sleep and wait for a signal

什么时候释放锁:

IO Block

every 100 tick force, default

gil 是mutex + semaphore + condition

check_connection(self);

Py_BEGIN_ALLOW_THREADS

r = mysql_real_query(&(self->connection), query, len);

Py_END_ALLOW_THREADS

_mysql.c gil process

scheduler I/O

I/O I/O I/O I/Orun run run run

acquire

release

acquire

release

acquire

release
release

acquire

scheduler counter

c
h
e
c
k

run 100 ticks run 100 ticks run 100 ticks

acquire release release
release

acquire

c
h
e
c
k

c
h
e
c
k

Change it using sys.setcheckinterval()

acquire

what a check
Periodic “check” is simple

The currently running thread …

reset the tick counter

run signal handler if this is main thread

relase the gil

Reacquires the gil

A tick ?
def go():
 a = True
 for i in range(3):
 print i
 if a:
 print "xiaorui.cc"
 b = None
 c = 123

wake up
Condition Variable

等待wake up的线程队列enqueue

dequeuesignal

thread 5
thread 3

thread 2

thread 7

thread 1

t2 100 5351 ENTRY
t2 100 5351 ACQUIRE
t2 100 5352 RELEASE
t2 100 5352 ENTRY
t2 100 5352 ACQUIRE
t2 100 5353 RELEASE
t1 100 5353 ACQUIRE
t2 100 5353 ENTRY
t2 38 5353 BUSY
t1 100 5354 RELEASE
t1 100 5354 ENTRY
t1 100 5354 ACQUIRE
t2 79 5354 RETRY
t1 100 5355 RELEASE
t1 100 5355 ENTRY
t1 100 5355 ACQUIRE
t2 73 5355 RETRY
t1 100 5356 RELEASE
t2 100 5356 ACQUIRE
t1 100 5356 ENTRY
t1 24 5356 BUSY
t2 100 5357 RELEASE

进⼊临界区

获取锁

释放锁

没拿到锁

重新尝试

break to think

python如何保证list\dict的操作原⼦性

某个线程⼀直⾼比率拿到锁 ?

t1时间片用完了, kernel把t2调度起来, 但gil还在t1⼿里 ?

多线程都在⼀个cpu core上 ?

suspended

100 tciks

check

os

signal
wake

release

不公平竞争

100 tciks

check

signal

suspended

100 tciks

T1

T2

thread
cs

……

不公平竞争

Thread A (cpu 1)

多核

Thread B (cpu 2)

release gil

acquire gil

release gil

acquire gil

waked

acquire gil (fail)

waked

acquire gil (fail)

signale

signale

suspended

100 tciks

check

new gil

100 tciks
T1

T2
cv_wait(gil,TIMEOUT)

timeout

signale

suspended

100 tciks

gil_drop_request = 1 gil_drop_request = 0

cv_wait(gil,TIMEOUT)

那么threading场景

由于有gil全局锁, python多线程的意义 ?

IO 密集

CPU 密集

python的线程调度策略

再次声明，解释器没有thread调度器

特例, Signal

当信号到达的时，解释器会按照每个tick都要check. 直到main thread处
理了signal.

绕过gil

multiprocessing

python gil 存在于线程之间

ctypes

调用c函数之前, 会释放gil

more … …

kill gil

python能否去掉gil ?

如何实现python底层去gil ?

去掉之后又会出现什么 ?

总结: 值不值, 成本 ?

“Q & A”

–峰云就她了

